最新論文抄録


  • Genetic evaluation of age at first calving and days open under different censoring scenarios in Iranian Holstein cows

    Trop Anim Health Prod. 2022 Aug 10;54(5):257. doi: 10.1007/s11250-022-03248-x.

    ABSTRACT

    The present study aimed to investigate the effect of censoring, the situations in which incomplete at the time, out of range, and/or delayed records were considered, in the estimation of genetic parameters for age at first calving (AFC) and days open (DO) in Iranian Holstein cows. The dataset included 281,772 records collected from 1991 to 2019 by the Vahdat Cooperative Company, a pioneer dairy farm in Isfahan Province, the central part of Iran. Five animal models including linear model (LM), penalty model (PM), modified penalty model (MPM), linear-threshold model (LTM), and modified linear-threshold model (MLTM) were used for genetic evaluation of the trait studied. The predictive ability of the models was assessed using cross-validation. The lowest mean square of error and highest r(y,y) were obtained under MLTM for AFC and under LTM for DO, indicating that MLTM and LTM are recommended for genetic evaluation of AFC and DO with censored records in Iranian Holstein cows, respectively. The prediction accuracy of the models for AFC was relatively similar, ranging from 0.46 (under LM) to 0.48 (under PM, LTM, and MLTM). For DO, prediction accuracy values ranged from 0.36 (under LM) to 0.47 (under PM and LTM). The posterior mean for heritability of AFC under MLTM was 0.11. There was no significant difference among posterior means for the heritability of AFC under different models. Therefore, LM is preferred for genetic evaluation of AFC in Iranian Holsteins, and taking censored records into account is unnecessary. The posterior mean for heritability of DO under LTM was 0.09. There were no statistically significant differences among the heritability estimates of DO under LTM, PM, and MLTM. But considering censored records for genetic evaluation of DO affects the estimation of heritability and improved model accuracy for this trait. Therefore, LTM is preferred and recommended for genetic evaluation of DO in Iranian Holsteins.

    PMID:35948837 | DOI:10.1007/s11250-022-03248-x

  • Comparison of growth curve models for Ongole Grade cattle

    Trop Anim Health Prod. 2022 Aug 9;54(5):252. doi: 10.1007/s11250-022-03254-z.

    ABSTRACT

    Growth curves are important for understanding the growth phase and specific characteristics of farm animals. This study evaluated growth curve models to predict the age at puberty and growth rate of Ongole Grade cattle. The study used the weights of cattle from birth to 5 years old in 2011 to 2019 obtained from the Beef Cattle Research Station. The data were analyzed using four non-linear growth curve models: Brody, von Bertalanffy, logistic, and Gompertz. The coefficients of determination (R2) of the growth equation for the respective models were in the high range. The lowest Akaike’s information criterion (AIC) value for males and females was obtained by the Brody and logistic models, respectively. Males with the von Bertalanffy, logistic, and Gompertz models had an estimated age and body weight at puberty of 12.56 months and 198.93 kg, 21.46 months and 298.43 kg, and 15.71 months and 235.49 kg, respectively, while females had an estimated age and body weight of 11.79 months and 166.44 kg, 13.94 months and 164.08 kg, and 11.76 months and 169.57 kg, respectively. The Brody function best fit the growth rate and exhibited the smallest mean deviation.

    PMID:35945407 | DOI:10.1007/s11250-022-03254-z

  • Bovine leptospirosis: effects on reproduction and an approach to research in Colombia

    Trop Anim Health Prod. 2022 Aug 9;54(5):251. doi: 10.1007/s11250-022-03235-2.

    ABSTRACT

    Leptospirosis is the most widespread zoonosis worldwide, causing severe effects on beef and dairy cattle farming and other livestock. Colombia geographical location in the tropical zone, high biodiversity, and climatic conditions promote Leptospira growth and prevalence. This review article presents state-of-the-art knowledge about the effects of leptospirosis on bovine reproduction and a critical analysis of the research carried out in Colombia. The analysis of the information allows us to infer a sustained increase in prevalence over the last decade in the densest livestock production areas and a high serovar diversity of circulating pathogenic Leptospira. Given the zoonotic nature of leptospirosis, an inter-institutional effort is required to implement prevention, control, and monitoring programs under one-health concept.

    PMID:35943610 | PMC:PMC9360731 | DOI:10.1007/s11250-022-03235-2

  • Nucleoside Triphosphate Hydrolases Assay in Toxoplasm gondii and Neospora caninum for High-Throughput Screening using a Robot Arm

    J Vis Exp. 2022 Jul 22;(185). doi: 10.3791/62874.

    ABSTRACT

    Protozoan parasites infect humans and many warm-blooded animals. Toxoplasma gondii, a major protozoan parasite, is commonly found in HIV-positive patients, organ transplant recipients and pregnant women, resulting in the severe health condition, Toxoplasmosis. Another major protozoan, Neospora caninum, which bears many similarities to Toxoplasma gondii, causes serious diseases in animals, as does Encephalomyelitis and Myositis-Polyradiculitis in dogs and cows, resulting in stillborn calves. All these exhibited similar nucleoside triphosphate hydrolases (NTPase). Neospora caninum has a NcNTPase, while Toxoplasma gondii has a TgNTPase-I. The enzymes are thought to play crucial roles in propagation and survival. In order to establish compounds and/or extracts preventing protozoan infection, we targeted these enzymes for drug discovery. The next step was to establish a novel, highly sensitive, and highly accurate assay by combining a conventional biochemical enzyme assay with a fluorescent assay to determine ADP content. We also validated that the novel assay fulfills the criteria to carry out high-throughput screening (HTS) in the two protozoan enzymes. We performed HTS, identified 19 compounds and six extracts from two synthetic compound libraries and an extract library derived from marine bacteria, respectively. In this study, a detailed explanation has been introduced on how to carry out HTS, including information about the preparation of reagents, devices, robot arm, etc.

    PMID:35938815 | DOI:10.3791/62874

  • Intake and apparent digestibility of dry matter, milk production, and composition of cows fed with diets containing oilseed cakes: A meta-analysis

    Anim Sci J. 2022 Jan;93(1):e13758. doi: 10.1111/asj.13758.

    ABSTRACT

    Oilseed cakes can partially replace corn or soy used in the diet without losing animal performance. The objective was to carry out a meta-analysis and principal component analysis to evaluate the effects of cakes on the intake and apparent digestibility coefficient (ADC) of dry matter (DM) and milk production and composition in lactating dairy cows. The data set used in the meta-analysis came from 51 studies published between 2009 and 2019, which resulted in 119 studies with 18 types of cakes evaluated in 1350 cows. Cows fed with cakes increased dry matter intake (DMI) by 0.366 kg d-1 (P < 0.001) and DMI as a function of the animal's body weight by 0.103% (P < 0.0001) compared with the diet without cake. The milk protein content decreased by 0.050% (P < 0.010). The contents of neutral detergent fiber (NDF) (26%-%) and ether extract (EE) (3%-7%) of the cake diets did not affect ADCDM. Cakes with contents between 10% and 30% can replace corn or soy in the diet without affecting milk production, components (fat, protein, and lactose), and contents (fat and lactose), but it can reduce the milk protein content of milk.

    PMID:35932203 | DOI:10.1111/asj.13758

  • Species identification and cow risks of non-aureus staphylococci from South African dairy herds

    Onderstepoort J Vet Res. 2022 Jul 27;89(1):e1-e10. doi: 10.4102/ojvr.v89i1.2021.

    ABSTRACT

    Detailed information on specific species of non-aureus staphylococci (NAS) has become a necessity for effective udder health control programs in South Africa. The main objective of this preliminary study was to identify the different NAS species and strains present in dairy herds in South Africa using a cost-effective method. A further objective was to investigate the effects of cow risk factors and farming systems on the NAS isolates identified. A total of 214 NAS, isolated from milk collected from 17 South African dairy herds, were identified using three diagnostic tests (API Staph test, MALDI-TOF and 16s rRNA). There was a good observed agreement between the MALDI-TOF and 16S rRNA sequencing (92.2%) and a poor observed agreement between the MALDI-TOF and API Staph (25.7%). The genetic relatedness within species was investigated in 128 of these isolates using random polymorphic amplified deoxyribonucleic acid (DNA) (RAPD), verified by multilocus sequence typing (MLST), and phylogenetic analysis and cow risk factors were investigated on species level. The main NAS species isolated were Staphylococcus chromogenes (75.2%), Staphylococcus epidermidis (9.4%) and Staphylococcus haemolyticus (8.9%). The RAPD test identified 34 Staphylococcus chromogenes, 13 Staphylococcus epidermidis and nine Staphylococcus haemolyticus strains, indicating genetic diversity amongst strains and herds. The presence of NAS intramammary infections was found to be significantly related to the farming systems, composite cow milk somatic cell count (SCC), parity and days in milk (DIM). Significantly more NAS were isolated from primiparous and from older cows. This knowledge could assist with the management of NAS on dairy farms.

    PMID:35924616 | PMC:PMC9350540 | DOI:10.4102/ojvr.v89i1.2021

  • Metal deposition and shape reproduction at biological temperatures on cell-level samples

    Sci Rep. 2022 Aug 3;12(1):13328. doi: 10.1038/s41598-022-17562-9.

    ABSTRACT

    The use of metal deposition has been limited to a limited number of applicable samples due to the increased temperature caused by accelerated electron impact on the substrate surface. The surfaces of various biological samples have a nanoscale structure with specific properties, which have been simulated in numerous studies. However, no examples of nano/microscale reproductions of biological surface features have used moulds. In this study, a mould that imitates the surface shape of a cellular-level biological material was fabricated, for the first time, and the shape was successfully reproduced using the mould. Al thin films were deposited on bovine sperm using magnetron sputtering without thermal denaturation with a cathode operating at a biological temperature. It is difficult to deposit films used as metal coatings on pre-treated biological materials at temperatures below 40 °C during evaporation. The Al thin film was peeled off and used as a mould to reproduce the shape of the sperm with high accuracy using a polymer. The results of this study represent a major innovation in reproducible biomimetic moulding technology, demonstrating biological temperature sputtering. We expect our non-destructive metal deposition and metal nano-moulding methods for biological samples to be the basis for the effective utilization of various biological structures.

    PMID:35922439 | PMC:PMC9349294 | DOI:10.1038/s41598-022-17562-9

  • Neospora caninum infection induced mitochondrial dysfunction in caprine endometrial epithelial cells via downregulating SIRT1

    Parasit Vectors. 2022 Aug 1;15(1):274. doi: 10.1186/s13071-022-05406-4.

    ABSTRACT

    BACKGROUND: Infection of Neospora caninum, an important obligate intracellular protozoan parasite, causes reproductive dysfunctions (e.g. abortions) in ruminants (e.g. cattle, sheep and goats), leading to serious economic losses of livestock worldwide, but the pathogenic mechanisms of N. caninum are poorly understood. Mitochondrial dysfunction has been reported to be closely associated with pathogenesis of many infectious diseases. However, the effect of N. caninum infection on the mitochondrial function of hosts remains unclear.

    METHODS: The effects of N. caninum infection on mitochondrial dysfunction in caprine endometrial epithelial cells (EECs), including intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) contents, mitochondrial DNA (mtDNA) copy numbers and ultrastructure of mitochondria, were studied by using JC-1, DCFH-DA, ATP assay kits, quantitative real-time polymerase chain reaction (RT-qPCR) and transmission electron microscopy, respectively, and the regulatory roles of sirtuin 1 (SIRT1) on mitochondrial dysfunction, autophagy and N. caninum propagation in caprine EECs were investigated by using two drugs, namely resveratrol (an activator of SIRT1) and Ex 527 (an inhibitor of SIRT1).

    RESULTS: The current study found that N. caninum infection induced mitochondrial dysfunction of caprine EECs, including accumulation of intracellular ROS, significant reductions of MMP, ATP contents, mtDNA copy numbers and damaged ultrastructure of mitochondria. Downregulated expression of SIRT1 was also detected in caprine EECs infected with N. caninum. Treatments using resveratrol and Ex 527 to caprine EECs showed that dysregulation of SIRT1 significantly reversed mitochondrial dysfunction of cells caused by N. caninum infection. Furthermore, using resveratrol and Ex 527, SIRT1 expression was found to be negatively associated with autophagy induced by N. caninum infection in caprine EECs, and the intracellular propagation of N. caninum tachyzoites in caprine EECs was negatively affected by SIRT1 expression.

    CONCLUSIONS: These results indicated that N. caninum infection induced mitochondrial dysfunction by downregulating SIRT1, and downregulation of SIRT1 promoted cell autophagy and intracellular proliferation of N. caninum tachyzoites in caprine EECs. The findings suggested a potential role of SIRT1 as a target to develop control strategies against N. caninum infection.

    PMID:35915458 | PMC:PMC9344697 | DOI:10.1186/s13071-022-05406-4

  • Spatial-temporal trends and economic losses associated with bovine abortifacients in central Argentina

    Trop Anim Health Prod. 2022 Jul 30;54(4):242. doi: 10.1007/s11250-022-03237-0.

    ABSTRACT

    The aims of this work are, firstly, to provide the geolocalization of cases of bovine abortion with definitive diagnosis and, secondly, to estimate the economic losses due to the most frequent abortifacients diagnosed agents in cattle in Buenos Aires province, Argentina. The total beef and dairy cattle population at risk of abortion is 8,358,186 and 538,076, respectively. In beef cattle, the overall risk of abortion was estimated at 4.5% for all pregnancies, where 27.9% are due to Campylobacter fetus, Neospora caninum, Leptospira spp., Brucella abortus, and bovine viral diarrhea virus with economic losses of US$ 440 per abortion, being the annual loss to the beef industry of US$ 50,144,101. In dairy cattle, there was an 8.0% risk of suffering abortion, 26.1% produced by the same abortigenic agents. The economic losses were estimated at US$ 1,415 per abortion, which equals a total loss of US$ 17,298,498 for the dairy industry in the region. The results of this study show that infectious causes are highly prevalent in Buenos Aires province, and they caused severe economic impacts in the dairy and beef industries. Furthermore, changes in temporal trends of infectious abortion occurrence were detected, probably related to the inclusion of molecular diagnostic techniques with more sensitivity or different epidemiological or husbandry conditions in the region analyzed.

    PMID:35907064 | DOI:10.1007/s11250-022-03237-0

  • Performance and muscle lipogenesis of calves born to Nellore cows with different residual feed intake classification

    PLoS One. 2022 Jul 29;17(7):e0272236. doi: 10.1371/journal.pone.0272236. eCollection 2022.

    ABSTRACT

    This study aimed to evaluate relationships among maternal residual feed intake (RFI) with growth performance and expression of genes involved in lipid metabolism in offspring of Nellore cattle. Fifty-three cows classified as negative or positive RFI by genomic prediction were exposed to fixed-time artificial insemination (FTAI) protocols at 2 and 3 years of age using semen from the same bull. In the first year, cows gestated under grazing conditions and nursed their calves in the feedlot. In the second year, the opposite occurred. Cows were weighed every 28 days during pregnancy and calves were weighed at birth and every 28 days until weaning. Ultrasound images were collected from the carcass of cows and calves. Muscle gene expression was evaluated in calves at birth and weaning. Data were analyzed by year considering the fixed effects of RFI class and FTAI protocol for variables measured in cows, and RFI class, FTAI protocol and sex for variables measured in calves. There was no effect of maternal RFI on calves performance in the first year. Lower expression of FABP4 gene and trend towards lower expression of SREBF1 and LPL genes were detected in samples collected after birth from calves born to negative RFI cows, indicating that adipogenesis was reduced during the fetal and neonatal period. In the second year, negative RFI cows had greater subcutaneous fat thickness than positive RFI cows, and their calves tended to be heavier at birth and to have less rump fat thickness at weaning. No significant differences in expression of genes studied were detected between cow RFI classes. Nellore cows classified as negative RFI consume less feed and produce calves whose growth potential is similar to that of calves produced by positive RFI cows.

    PMID:35905086 | PMC:PMC9337683 | DOI:10.1371/journal.pone.0272236

  • Effect of estradiol and IGF1 on glycogen synthesis in bovine uterine epithelial cells

    Reproduction. 2022 Aug 1;164(3):97-108. doi: 10.1530/REP-22-0040. Print 2022 Sep 1.

    ABSTRACT

    IN BRIEF: Glucose is an important nutrient for the endometrium and embryo during pregnancy. This study shows that estradiol (E2)/IGF1 signaling stimulates glycogen synthesis in the uterine epithelium of cows, which could provide glucose when needed.

    ABSTRACT: Glycogen storage in the uterine epithelium peaks near estrus and is a potential source of glucose for the endometrium and embryos. However, the hormonal regulation of glycogen synthesis in the uterine epithelium is poorly understood. Our objective was to evaluate the effect of E2 and insulin-like growth factor 1 (IGF1) on glycogenesis in immortalized bovine uterine epithelial (BUTE) cells. Treatment of BUTE cells with E2 (0.1-10 nM) did not increase glycogen levels. However, treatment of BUTE cells with IGF1 (50 or 100 ng/mL) resulted in a >2-fold increase in glycogen. To determine if the uterine stroma produced IGF1 in response to E2, bovine uterine fibroblasts were treated with E2, which increased IGF1 levels. Immunohistochemistry showed higher levels of IGF1 in the stroma on day 1 than on day 11, which coincides with higher glycogen levels in the uterine epithelium. Western blots revealed that IGF1 treatment increased the levels of phospho-AKT, phospho-GSKβ, hexokinase 1, and glycogen synthase in BUTE cells. Metabolomic (GC-MS) analysis showed that IGF1 increased 3-phosphoglycerate and lactate, potentially indicative of increased flux through glycolysis. We also found higher levels of N-acetyl-glucosamine and protein glycosylation after IGF1 treatment, indicating increased hexosamine biosynthetic pathway activity. In conclusion, IGF1 is produced by uterine fibroblasts due to E2, and IGF1 increases glucose metabolism and glycogenesis in uterine epithelial cells. Glycogen stored in the uterine epithelium due to E2/IGF1 signaling at estrus could provide glucose to the endometrium or be secreted into the uterine lumen as a component of histotroph.

    PMID:35900330 | DOI:10.1530/REP-22-0040

  • Testis-Specific Isoform of Na<sup>+</sup>-K<sup>+</sup> ATPase and Regulation of Bull Fertility

    Int J Mol Sci. 2022 Jul 19;23(14):7936. doi: 10.3390/ijms23147936.

    ABSTRACT

    An advanced understanding of sperm function is relevant for evidence-based male fertility prediction and addressing male infertility. A standard breeding soundness evaluation (BSE) merely identifies gross abnormalities in bulls, whereas selection based on single nucleotide polymorphisms and genomic estimated breeding values overlooks sub-microscopic differences in sperm. Molecular tools are important for validating genomic selection and advancing knowledge on the regulation of male fertility at an interdisciplinary level. Therefore, research in this field is now focused on developing a combination of in vitro sperm function tests and identifying biomarkers such as sperm proteins with critical roles in fertility. The Na+-K+ ATPase is a ubiquitous transmembrane protein and its α4 isoform (ATP1A4) is exclusively expressed in germ cells and sperm. Furthermore, ATP1A4 is essential for male fertility, as it interacts with signaling molecules in both raft and non-raft fractions of the sperm plasma membrane to regulate capacitation-associated signaling, hyperactivation, sperm-oocyte interactions, and activation. Interestingly, ATP1A4 activity and expression increase during capacitation, challenging the widely accepted dogma of sperm translational quiescence. This review discusses the literature on the role of ATP1A4 during capacitation and fertilization events and its prospective use in improving male fertility prediction.

    PMID:35887284 | PMC:PMC9317330 | DOI:10.3390/ijms23147936

  • Lactoferrin Supplementation during Gestation and Lactation Is Efficient for Boosting Rat Pup Development

    Nutrients. 2022 Jul 8;14(14):2814. doi: 10.3390/nu14142814.

    ABSTRACT

    Lactoferrin (LF) is an iron-binding protein found at relatively high concentrations in human milk. LF, which is little degraded in the infant intestinal lumen, is known to stimulate the proliferation and differentiation of the small intestine epithelial cells. The present study was designed to evaluate in the rat model the effects of bovine LF (bLF) given to the mothers during gestation and lactation on the growth of the offspring. Female Wistar rats were randomly separated into two groups of animals that received from mating and during gestation and lactation a standard diet including or not including bLF (10 g/kg of diet). The pups’ growth was determined up to postnatal day 17 (PND17), and parameters related to lean and fat mass, intestinal differentiation, intestinal barrier function, bone mineral density, osteoblast activity, and brain development were measured. In addition, metabolites in pup plasma were determined at PND17. bLF was detected in the plasma and milk of the supplemented mothers as well as in the pup plasma. Although the body weight of the pups in the two groups did not differ at birth, the pups recovered from the supplemented mothers displayed an increase body weight from PND12 up to PND17. At PND17 in the bLF group, increased small intestine epithelial cell differentiation was detected, and colon barrier function was reinforced in association with increased expression of genes coding for the tight-junction proteins. Regarding bone physiology, improved bone mineral density was measured in the pups. Lastly, the plasma metabolite analysis revealed mainly higher amino acid concentrations in the LF pups as compared to the control group. Our results support that bLF ingestion by the mother during gestation and lactation can promote pup early life development. The potential interest of supplementing the mothers with bLF in the case of risk of compromised early life development of the offspring in the context of animal and human nutrition is discussed.

    PMID:35889770 | PMC:PMC9315504 | DOI:10.3390/nu14142814

  • Breastfeeding and Allergy Effect Modified by Genetic, Environmental, Dietary, and Immunological Factors

    Nutrients. 2022 Jul 22;14(15):3011. doi: 10.3390/nu14153011.

    ABSTRACT

    Breastfeeding (BF) is the most natural mode of nutrition. Its beneficial effect has been revealed in terms of both the neonatal period and those of lifelong effects. However, as for protection against allergy, there is not enough data. In the current narrative review, the literature within the last five years from clinical trials and population-based studies on breastfeeding and allergy from different aspects was explored. The aim of this review was to explain how different factors could contribute to the overall effect of BF. Special consideration was given to accompanying exposure to cow milk, supplement use, the introduction of solid foods, microbiota changes, and the epigenetic function of BF. Those factors seem to be modifying the impact of BF. We also identified studies regarding BF in atopic mothers, with SCFA as a main player explaining differences according to this status. Conclusion: Based on the population-based studies, breastfeeding could be protective against some allergic phenotypes, but the results differ within different study groups. According to the new research in that matter, the effect of BF could be modified by different genetic (HMO composition), environmental (cesarean section, allergen exposure), dietary (SCFA, introduction of solid food), and immunologic factors (IgG, IgE), thus partially explaining the variance.

    PMID:35893863 | PMC:PMC9331378 | DOI:10.3390/nu14153011

  • α/β-Hydrolase D16B Truncation Results in Premature Sperm Capacitation in Cattle

    Int J Mol Sci. 2022 Jul 14;23(14):7777. doi: 10.3390/ijms23147777.

    ABSTRACT

    Recently it was shown that a specific form of male infertility in Holstein cattle was caused by a nonsense variant in the α/β-hydrolase domain-containing 16B (ABHD16B) gene resulting in a protein truncation at amino acid position 218 (p.218Q*) and loss of function. Lipidomics showed that the absence of ABHD16B influenced the content of phosphatidylcholine (PC), ceramide (Cer), diacylglycerol (DAG), and sphingomyelin (SM) in variant carrier sperm membranes. However, the exact cause of infertility in affected sires has remained unclear until now. To elucidate the cause of infertility, we analyzed (i) standard sperm parameters (i.e., total sperm number, morphological intact sperm, total sperm motility), (ii) in vitro fertilizability and effects on early embryonic development, and (iii) sperm survival rates (i.e., capacitation time). The affected spermatozoa showed no changes in the usual sperm parameters and were also capable of fertilization in vitro. Furthermore, the absence of ABHD16B did not affect early embryonic development. Based on these results, it was concluded that the affected spermatozoa appeared to be fertilizable per se. Consequently, the actual cause of the inability to fertilize could only be due to a time- and/or place-dependent process after artificial insemination and before fertilization. A process fundamental to the ability to fertilize after insemination is capacitation. Capacitation is a biochemical maturation process that spermatozoa undergo in the female genital tract and is inevitable for the successful fertilization of the oocyte. It is known that the presence and concentration of certain sperm membrane lipids are essential for the correct course of capacitation. However, precisely these lipids are absent in the membrane of spermatozoa affected by the ABHD16B truncation. Since all other causes of fertilization inability were excluded in the previous experiments, consequently, the only remaining hypothesis was that the loss of function of ABHD16B leads to a capacitation disruption. We were able to show that heterozygous and homozygous affected spermatozoa exhibit premature capacitation and therefore decay before fertilization. This effect of the loss of function of ABHD16B has not been described before and our studies now revealed why sires harboring the variant in the ABHD16B gene are infertile.

    PMID:35887122 | PMC:PMC9316559 | DOI:10.3390/ijms23147777

  • Pharmacological and Non-Pharmacological Agents versus Bovine Colostrum Supplementation for the Management of Bone Health Using an Osteoporosis-Induced Rat Model

    Nutrients. 2022 Jul 11;14(14):2837. doi: 10.3390/nu14142837.

    ABSTRACT

    Osteoporosis is defined by loss of bone mass and deteriorated bone microarchitecture. The present study compared the effects of available pharmacological and non-pharmacological agents for osteoporosis [alendronate (ALE) and concomitant supplementation of vitamin D (VD) and calcium (Ca)] with the effects of bovine colostrum (BC) supplementation in ovariectomized (OVX) and orchidectomized (ORX) rats. Seven-month-old rats were randomly allocated to: (1) placebo-control, (2) ALE group (7.5 μg/kg of body weight/day/5 times per week), (3) VD/Ca group (VD: 35 μg/kg of body weight/day/5 times per week; Ca: 13 mg/kg of body weight/day/3 times per week), and (4) BC supplementation (OVX: 1.5 g/day/5 times per week; ORX: 2 g/day/5 times per week). Following four months of supplementation, bone microarchitecture, strength and bone markers were evaluated. ALE group demonstrated significantly higher Ct.OV, Ct.BMC, Tb.Th, Tb.OV and Tb.BMC and significantly lower Ct.Pr, Tb.Pr, Tb.Sp, Ct.BMD and Tb.BMD, compared to placebo (p < 0.05). BC presented significantly higher Ct.Pr, Ct.BMD, Tb.Pr, Tb.Sp, and Tb.BMD and significantly lower Ct.OV, Ct.BMC, Tb.Th, Tb.OV and Tb.BMC compared to ALE in OVX rats (p < 0.05). OVX rats receiving BC experienced a significant increase in serum ALP and OC levels post-supplementation (p < 0.05). BC supplementation may induce positive effects on bone metabolism by stimulating bone formation, but appear not to be as effective as ALE.

    PMID:35889794 | PMC:PMC9317446 | DOI:10.3390/nu14142837

  • Prevalence and risk factors of coliform-associated mastitis and antibiotic resistance of coliforms from lactating dairy cows in North West Cameroon

    PLoS One. 2022 Jul 26;17(7):e0268247. doi: 10.1371/journal.pone.0268247. eCollection 2022.

    ABSTRACT

    BACKGROUND: Coliform bacteria are major causative agents of bovine mastitis, a disease that has devastating effect on dairy animal health and milk production. This cross-sectional study, carried out in the North West region of Cameroon, sought to determine the prevalence of bovine mastitis, coliforms associated with bovine mastitis, risk factors for infection and the antibiotic resistance pattern of coliform bacterial isolates.

    MATERIALS AND METHODS: A total of 1608 udder quarters were sampled from 411 cows using a questionnaire, clinical examination, California Mastitis Test and milk culture. Primary isolation of coliform bacteria was done on MacConkey agar while identification of coliforms employed Gram-staining and biochemical testing. Each coliform bacterial isolate was challenged with 11 antibiotics using the Kirby-Bauer disc diffusion method.

    RESULTS: The prevalence of mastitis was 53.0% (218/411) and 33.1% (532/1608) at the cow- and quarter-levels respectively. Overall, 21.9% (90/411) cows and 8.2% (132/1608) udder quarters showed coliform mastitis. Escherichia coli was isolated in 7.0% of mastitis milk, and other coliforms isolated were Enterobacter cloacae (12.6%), Klebsiella pneumoniae (2.4%), Enterobacter sakazakii (1.1%), Klebsiella oxytoca (0.8%), Citrobacter freudii (0.4%), Serratia ficaria (0.4%) and Serratia liquefaciens (0.2%). Lactation stage, breed, history of mastitis and moist/muddy faeces contaminated environment were significantly associated (P-value < 0.05) with coliform mastitis. Coliform isolates (99.0%; 203/205) were resistant to at least one antibiotic tested. Amoxicillin had the highest resistance (88.8%) while norfloxacin had the least resistance (3.4%). Multidrug resistance was exhibited by 52.7% (108/205) of the isolates in a proportion of 27.8% Enterobacter cloacae, 10.7% E. coli, 6.3% Klebsiella pneumoniae, 2.9% Enterobacter sakazakii, 2.0% Klebsiella oxytoca, 1.0% Citrobacter freundii, 1.0% Serratia ficaria, 0.5% Serratia liquefaciens and 0.5% Serratia odorifera.

    CONCLUSION: Results indicate a need to educate these dairy farmers about mastitis (particularly subclinical), proper hygiene methods in milking and the public health implications of consuming contaminated raw milk.

    PMID:35881624 | PMC:PMC9321367 | DOI:10.1371/journal.pone.0268247

  • Reference gene selection in bovine caruncular epithelial cells under pregnancy-associated hormones exposure

    Sci Rep. 2022 Jul 26;12(1):12742. doi: 10.1038/s41598-022-17069-3.

    ABSTRACT

    Examination of transcriptional regulation occurring during pregnancy establishment and maintenance requires the identification of endogenous reference genes characterized by high expression stability. Since the expression of some reference genes may be modulated by pregnancy-associated hormones, the goal of our study was to identify suitable reference genes unaffected by hormonal treatment. In our study bovine caruncular epithelial cells were subjected to progesterone, estrogen and prostaglandin F treatment. Ten candidate reference genes (ACTR1A, CNOT11, HDAC1, HPRT1, RPL19, RPS9, SDHA, SUZ12, UXT and ZNF131) were evaluated with the use of four approaches (geNorm, NormFinder, BestKeeper, delta Ct). We found that RPS9 and SUZ12 displayed the highest expression stability in the tested material. Moreover, HPRT1 and SDHA were found inappropriate for RT-qPCR data normalization as they demonstrated the highest expression variability out of all candidates analysed. Hence geNorm calculations shown that the use of just two best-performing genes would be sufficient for obtaining reliable results, we propose that RPS9 and SUZ12 be used as suitable endogenous controls in future studies investigating gene expression in normal and compromised pregnancies.

    PMID:35882953 | PMC:PMC9325760 | DOI:10.1038/s41598-022-17069-3

  • The Blood Immune Cell Count, Immunoglobulin, Inflammatory Factor, and Milk Trace Element in Transition Cows and Calves Were Altered by Increasing the Dietary n-3 or n-6 Polyunsaturated Fatty Acid Levels

    Front Immunol. 2022 Jul 7;13:897660. doi: 10.3389/fimmu.2022.897660. eCollection 2022.

    ABSTRACT

    Transition dairy cows experience sudden changes in both metabolic and immune functions, which lead to many diseases in postpartum cows. Therefore, it is crucial to monitor and guarantee the nutritional and healthy status of transition cows. The objective of this study was to determine the effect of diet enriched in n-3 or n-6 polyunsaturated fatty acid (PUFA) on colostrum composition and blood immune index of multiparous Holstein cows and neonatal calves during the transition period. Forty-five multiparous Holstein dairy cows at 240 days of pregnancy were randomly assigned to receive 1 of 3 isoenergetic and isoprotein diets: 1) CON, hydrogenated fatty acid (control), 1% of hydrogenated fatty acid [diet dry matter (DM) basis] during prepartum and postpartum, respectively; 2) HN3, 3.5% of extruding flaxseed (diet DM basis, n-3 PUFA source); 3) HN6, 8% of extruding soybeans (diet DM basis, C18:2n-6 PUFA source). Diets containing n-3 and n-6 PUFA sources decreased colostrum immunoglobulin G (IgG) concentration but did not significantly change the colostrum IgG yield compared with those with CON. The commercial milk yield (from 14 to 28 days after calving) was higher in the HN3 and HN6 than that in the CON. Furthermore, the n-3 PUFA source increased neutrophil cell counts in blood during the prepartum period and increased neutrophil percentage during the postpartum period when compared with those with control treatment. Diets containing supplemental n-3 PUFA decreased the serum concentration of interleukin (IL)-1β in maternal cows compared with those in control and n-6 PUFA during prepartum and postpartum. In addition, the neonatal calf serum concentration of tumor necrosis factor (TNF) was decreased in HN3 compared with that in the HN6 treatment. The diet with the n-3 PUFA source could potentially increase the capacity of neutrophils to defend against pathogens in maternal cows by increasing the neutrophil numbers and percentage during the transition period. Meanwhile, the diet with n-3 PUFA source could decrease the pro-inflammatary cytokine IL-1β of maternal cows during the transition period and decline the content of pro-inflammatary cytokine TNF of neonatal calves. It suggested that the highest milk production in n-3 PUFA treatment may partially be due to these beneficial alterations.

    PMID:35874736 | PMC:PMC9300944 | DOI:10.3389/fimmu.2022.897660

  • Use of Bisection to Reduce Mitochondrial DNA in the Bovine Oocyte

    J Vis Exp. 2022 Jul 6;(185). doi: 10.3791/64060.

    ABSTRACT

    Interspecies somatic cell nuclear transfer (iSCNT) may be used to rescue endangered species, but two distinct populations of mitochondrial DNA (mtDNA) exist within the reconstructed embryo: one within the recipient ooplasm and one within the donor somatic cell. This mitochondrial heteroplasmy can lead to developmental issues in the embryo and the fetus. Handmade cloning protocols include oocyte bisection, which can be used to decrease the mtDNA copy number, reducing the degree of mitochondrial heteroplasmy in a reconstructed embryo. Centrifugation of denuded, mature bovine oocytes produced a visible mitochondria-dense fraction at one pole of the oocyte. Oocytes’ zonae pellucidae were removed by exposure to a pronase solution. Bisection was performed using a microblade to remove the visible mitochondria fraction. qPCR was used to quantify the mtDNA present in DNA samples extracted from whole oocytes and bisected ooplasts, providing a comparison of mtDNA copy numbers before and after bisection. Copy numbers were calculated using cycle threshold values, a standard curve’s regression line formula, and a ratio that included the respective sizes of mtDNA PCR products and genomic PCR products. One bovine oocyte had an average mtDNA copy number (± standard deviation) of 137,904 ± 94,768 (n = 38). One mitochondria-depleted ooplast had an average mtDNA copy number of 8,442 ± 13,806 (n = 33). Average mtDNA copies present in a mitochondria-rich ooplast were 79,390 ± 58,526 mtDNA copies (n = 28). The differences between these calculated averages indicate that the centrifugation and subsequent bisection can significantly decrease the mtDNA copy numbers present in the mitochondria-depleted ooplast when compared to the original oocyte (P < 0.0001, determined by one-way ANOVA). The reduction in mtDNA should decrease the degree of mitochondrial heteroplasmy in a reconstructed embryo, possibly fostering standard embryonic and fetal development. Supplementation with mitochondrial extract from the somatic donor cell may also be essential to achieve successful embryonic development.

    PMID:35876541 | DOI:10.3791/64060

  • Effects of Turmeric Powder on Aflatoxin M1 and Aflatoxicol Excretion in Milk from Dairy Cows Exposed to Aflatoxin B1 at the EU Maximum Tolerable Levels

    Toxins (Basel). 2022 Jun 24;14(7):430. doi: 10.3390/toxins14070430.

    ABSTRACT

    Due to the climatic change, an increase in aflatoxin B1 (AFB1) maize contamination has been reported in Europe. As an alternative to mineral binders, natural phytogenic compounds are increasingly used to counteract the negative effects of AFB1 in farm animals. In cows, even low dietary AFB1 concentrations may result in the milk excretion of the genotoxic carcinogen metabolite aflatoxin M1 (AFM1). In this study, we tested the ability of dietary turmeric powder (TP), an extract from Curcuma longa (CL) rich in curcumin and curcuminoids, in reducing AFM1 mammary excretion in Holstein-Friesian cows. Both active principles are reported to inhibit AFM1 hepatic synthesis and interact with drug transporters involved in AFB1 absorption and excretion. A crossover design was applied to two groups of cows (n = 4 each) with a 4-day washout. Animals received a diet contaminated with low AFB1 levels (5 ± 1 µg/kg) for 10 days ± TP supplementation (20 g/head/day). TP treatment had no impact on milk yield, milk composition or somatic cell count. Despite a tendency toward a lower average AFM1 milk content in the last four days of the treatment (below EU limits), no statistically significant differences with the AFB1 group occurred. Since the bioavailability of TP active principles may be a major issue, further investigations with different CL preparations are warranted.

    PMID:35878168 | PMC:PMC9317782 | DOI:10.3390/toxins14070430

  • Cocktails of Mycotoxins, Phytoestrogens, and Other Secondary Metabolites in Diets of Dairy Cows in Austria: Inferences from Diet Composition and Geo-Climatic Factors

    Toxins (Basel). 2022 Jul 15;14(7):493. doi: 10.3390/toxins14070493.

    ABSTRACT

    Dairy production is a pivotal economic sector of Austrian and European agriculture. Dietary toxins and endocrine disruptors of natural origin such as mycotoxins and phytoestrogens can affect animal health, reproduction, and productivity. This study characterized the profile of a wide spectrum of fungal, plant, and unspecific secondary metabolites, including regulated, emerging, and modified mycotoxins, phytoestrogens, and cyanogenic glucosides, in complete diets of lactating cows from 100 Austrian dairy farms. To achieve this, a validated multi-metabolite liquid chromatography/electrospray ionization-tandem mass spectrometric (LC/ESI-MS/MS) method was employed, detecting 155 of >800 tested metabolites. Additionally, the most influential dietary and geo-climatic factors related to the dietary mycotoxin contamination of Austrian dairy cattle were recognized. We evidenced that the diets of Austrian dairy cows presented ubiquitous contamination with mixtures of mycotoxins and phytoestrogens. Metabolites derived from Fusarium spp. presented the highest concentrations, were the most recurrent, and had the highest diversity among the detected fungal compounds. Zearalenone, deoxynivalenol, and fumonisin B1 were the most frequently occurring mycotoxins considered in the EU legislation, with detection frequencies >70%. Among the investigated dietary factors, inclusion of maize silage (MS) and straw in the diets was the most influential factor in contamination with Fusarium-derived and other fungal toxins and metabolites, and temperature was the most influential among the geo-climatic factors.

    PMID:35878231 | PMC:PMC9318294 | DOI:10.3390/toxins14070493

  • Can machine learning algorithms perform better than multiple linear regression in predicting nitrogen excretion from lactating dairy cows

    Sci Rep. 2022 Jul 21;12(1):12478. doi: 10.1038/s41598-022-16490-y.

    ABSTRACT

    This study aims to compare the performance of multiple linear regression and machine learning algorithms for predicting manure nitrogen excretion in lactating dairy cows, and to develop new machine learning prediction models for MN excretion. Dataset used were collated from 43 total diet digestibility studies with 951 lactating dairy cows. Prediction models for MN were developed and evaluated using MLR technique and three machine learning algorithms, artificial neural networks, random forest regression and support vector regression. The ANN model produced a lower RMSE and a higher CCC, compared to the MLR, RFR and SVR model, in the tenfold cross validation. Meanwhile, a hybrid knowledge-based and data-driven approach was developed and implemented to selecting features in this study. Results showed that the performance of ANN models were greatly improved by the turning process of selection of features and learning algorithms. The proposed new ANN models for prediction of MN were developed using nitrogen intake as the primary predictor. Alternative models were also developed based on live weight and milk yield for use in the condition where nitrogen intake data are not available (e.g., in some commercial farms). These new models provide benchmark information for prediction and mitigation of nitrogen excretion under typical dairy production conditions managed within grassland-based dairy systems.

    PMID:35864287 | PMC:PMC9304409 | DOI:10.1038/s41598-022-16490-y

  • Multiomic Analyses Reveal the Effects of Supplementing Phytosterols on the Metabolic Function of the Rumen Microbiota in Perinatal Cows

    Appl Environ Microbiol. 2022 Aug 9;88(15):e0099222. doi: 10.1128/aem.00992-22. Epub 2022 Jul 20.

    ABSTRACT

    Phytosterols are natural steroids in plants, possessing bioactivities that could modify gut microbes. This experiment aimed to evaluate the effects of feeding phytosterols on the community structures and metabolic functions of the rumen microbiota in perinatal cows. Perinatal cows were supplied with 0 mg (control) or 200 mg (treatment) phytosterols per day. Multiomic analyses were used to analyze the community structures and metabolic functions of rumen microbiota. Results showed that dietary phytosterols increased the copy number of total ruminal bacteria, the concentration of microbial crude protein, and the molar percentage of propionate in the rumen of perinatal cows but had no effects on the alpha diversity of ruminal bacteria. However, they enriched three genera (i.e., Fibrobacter) and seven species (i.e., Fibrobacter succinogenes) within active ruminal bacteria. Metatranscriptomic and metabolomic analyses revealed that dietary phytosterols enhanced the pathway of glycolysis and the family of glycoside hydrolase 13 but depressed the citrate cycle and pyruvate metabolism and several pathways of amino acid biosynthesis. In conclusion, dietary addition of phytosterols improved the growth of ruminal bacteria and changed rumen fermentation by modifying the rumen microbiome and the energy metabolism pathways, which would be beneficial for the energy utilization of perinatal cows. IMPORTANCE Perinatal cows suffer serious physiological stress and energy deficiency. Phytosterols have bioactive functions for gut microbes. However, little knowledge is available on their effects on rumen microbiota and rumen fermentation. Results of the present experiment revealed that dietary supplementation of phytosterols could improve the growth of ruminal bacteria and changed the rumen fermentation to provide more glycogenetic precursors for the perinatal cows by modifying the ruminal bacteria community and altering the energy metabolism pathways of the rumen microbiota. These findings suggest that dietary supplementation of phytosterols would be beneficial for perinatal cows suffering from a negative energy balance.

    PMID:35856688 | PMC:PMC9361816 | DOI:10.1128/aem.00992-22

  • Spatial analysis of microclimatic variables in compost-bedded pack barn with evaporative tunnel cooling

    An Acad Bras Cienc. 2022 Jul 18;94(3):e20210226. doi: 10.1590/0001-3765202220210226. eCollection 2022.

    ABSTRACT

    In this study, we aimed to assess the spatial variability of microclimate inside a closed compost-bedded pack barn (CBP) with a negative ventilation system during summer and winter. The research was carried out in a CBP located in the Zona da Mata region, Minas Gerais, Brazil. For each of the stations analyzed, the following environmental mean variables observed inside a CBP were measured: air dry-bulb temperature (tdb), air relative humidity (RH), and windspeed, Temperature-Humidity index, and specific enthalpy. The kriging maps showed that the most critical housing conditions in the thermal environment were found, mainly, from the central part of the CBP, close to the exhaust fans. The analyses also pointed out that the system presented temperature gradients along the length, up to 3°C. During the summer afternoon, the entire region of the CBP was in a discomfort situation (tdb>26°C; RH>75%). During the winter, the measured environmental data remained within the comfort zone throughout the facility. However, probably due to the lack of thermal insulation of the material used to close the sides of the CBP, it did not allow spatial thermal uniformity for both seasons. It was also inefficient to keep the animals within the comfort zone for lactating cattle during the critical summer period.

    PMID:35857961 | DOI:10.1590/0001-3765202220210226

  • Estimates of the genetic contribution to methane emission in dairy cows: a meta-analysis

    Sci Rep. 2022 Jul 19;12(1):12352. doi: 10.1038/s41598-022-16778-z.

    ABSTRACT

    The present study aimed to perform a meta-analysis using the three-level model to integrate published estimates of genetic parameters for methane emission traits [methane yield (METY), methane intensity (METINT), and methane production (METP)] in dairy cows. Overall, 40 heritability estimates and 32 genetic correlations from 17 papers published between 2015 and 2021 were used in this study. The heritability estimates for METY, METINT, and METP were 0.244, 0.180, and 0.211, respectively. The genetic correlation estimates between METY and METINT with corrected milk yield for fat, protein, and or energy (CMY) were negative (- 0.433 and – 0.262, respectively). Also, genetic correlation estimates between METINT with milk fat and protein percentages were 0.254 and 0.334, respectively. Although the genetic correlation estimate of METP with daily milk yield was 0.172, its genetic correlation with CMY was 0.446. All genetic correlation estimates between METP with milk fat and protein yield or percentage ranged from 0.005 (between METP-milk protein yield) to 0.185 (between METP-milk protein percentage). The current meta-analysis confirmed the presence of additive genetic variation for methane emission traits in dairy cows that could be exploited in genetic selection plans.

    PMID:35853993 | PMC:PMC9296463 | DOI:10.1038/s41598-022-16778-z

  • The effect of pre-calving injection of trace mineral supplements on periparturient disease incidence in pasture based dairy cows

    Vet J. 2022 Aug;286:105867. doi: 10.1016/j.tvjl.2022.105867. Epub 2022 Jul 13.

    ABSTRACT

    Trace minerals, have a role in immune function and a trace mineral supplement (TMS) can improve animal health in dairy herds. This prospective randomised clinical study assessed whether subcutaneous injection of 5.5 mL of TMS (40 mg zinc, 10 mg manganese, 5 mg selenium, 15 mg copper per mL), 14-28 days before planned start of calving (PSC) reduced clinical mastitis (CM), subclinical mastitis (SCM) and purulent vaginal discharge (PVD). From four farms, half of 1700 cows stratified on somatic cell count, age and breed were randomly allocated to treatment or no treatment. Occurrence of CM from – 7 to PSC + 100 days, SCM at PSC + 60 days and PVD at PSC + 24 days was analysed using survival analysis and Bayesian generalised mixed multivariable models. From -7 to PSC +30 days, TMS reduced the adjusted hazard ratio (HR) for CM at quarter and cow level (P < 0.001), with no evidence for an effect beyond 30 days. The adjusted OR (and 95% highest density interval, HDI) for the effect of TMS on CM from -7 to PSC +30 days was 0.40 (95% HDI, 0.26-0.63) at quarter level, 0.51 (95% HDI, 0.38-0.69) at cow level and for SCM, 0.72 (95% HDI, 0.54-0.95). The difference in CM incidence from TMS at the cow level was -2.0% (95% HDI, -3.4 to -1.1%) and -1.2% (95% HDI, -3.2 to - 0.6%) at quarter level. No clear effect was identified of TMS on cumulative incidence of PVD.

    PMID:35842221 | DOI:10.1016/j.tvjl.2022.105867

  • Research advances on interferon (IFN) response during BVDV infection

    Res Vet Sci. 2022 Dec;149:151-158. doi: 10.1016/j.rvsc.2022.04.011. Epub 2022 Jun 24.

    ABSTRACT

    Bovine viral diarrhea virus (BVDV) is an important pathogen responsible for significant economic loss to cattle. BVDV infection in pregnant cattle leads to fetal infection and reproductive losses, including early embryonic death, abortion, and stillbirth. Importantly, vaccinated heifers could not provide fetal protection against BVDV. It can be divided into two genotypes (BVDV-1 and BVDV-2) and two biotypes (cytopathic (CP) and non-cytopathic (NCP)). Infection with NCP-BVDV during gestation, the fetus becomes persistently infected (PI) and sheds BVDV throughout life, serving as the main source of infection for other cattle. BVDV potentially induces immunosuppression and aggravates bovine respiratory disease (BRD). Accordingly, BVDV infection results in a heterogeneous range of clinical signs and immune responses. Interferon (IFN) plays a vital role by mediating the innate immune response against antiviral infection through the Janus Kinase (JAK)-signal transducer and activator of transcription (STAT) pathway. BVDV infection can reportedly exert variable degrees of influence on IFN response. Interestingly, reports have suggested that IFN can exert a significant inhibitory effect on various viruses. Human IFN-α was used to restrain BVDV in vitro. In this article, we summarized the latest researches on IFN response during BVDV infection.

    PMID:35839708 | DOI:10.1016/j.rvsc.2022.04.011

  • Residual feed intake in peripartal dairy cows is associated with differences in milk fat yield, ruminal bacteria, biopolymer hydrolyzing enzymes, and circulating biomarkers of immunometabolism

    J Dairy Sci. 2022 Aug;105(8):6654-6669. doi: 10.3168/jds.2021-21274. Epub 2022 Jul 13.

    ABSTRACT

    Residual feed intake (RFI) measures feed efficiency independent of milk production level, and is typically calculated using data past peak lactation. In the current study, we retrospectively classified multiparous Holstein cows (n = 320) from 5 of our published studies into most feed-efficient (M-eff) or least feed-efficient (L-eff) groups using performance data collected during the peripartal period. Objectives were to assess differences in profiles of plasma biomarkers of immunometabolism, relative abundance of key ruminal bacteria, and activities of digestive enzymes in ruminal digesta between M-eff and L-eff cows. Individual data from cows with ad libitum access to a total mixed ration from d -28 to d +28 relative to calving were used. A linear regression model including dry matter intake (DMI), energy-corrected milk (ECM), changes in body weight (BW), and metabolic BW was used to classify cows based on RFI divergence into L-eff (n = 158) and M-eff (n = 162). Plasma collected from the coccygeal vessel at various times around parturition (L-eff = 60 cows; M-eff = 47 cows) was used for analyses of 30 biomarkers of immunometabolism. Ruminal digesta collected via esophageal tube (L-eff = 19 cows; M-eff = 29 cows) was used for DNA extraction and assessment of relative abundance (%) of 17 major bacteria using real-time PCR, as well as activity of cellulase, amylase, xylanase, and protease. The UNIVARIATE procedure of SAS 9.4 (SAS Institute Inc.) was used for analyses of RFI coefficients. The MIXED procedure of SAS was used for repeated measures analysis of performance, milk yield and composition, plasma immunometabolic biomarkers, ruminal bacteria, and enzyme activities. The M-eff cows consumed less DMI during the peripartal period compared with L-eff cows. In the larger cohort of cows, despite greater overall BW for M-eff cows especially in the prepartum (788 vs. 764 kg), no difference in body condition score was detected due to RFI or the interaction of RFI × time. Milk fat content (4.14 vs. 3.75 ± 0.06%) and milk fat yield (1.75 vs. 1.62 ± 0.04 kg) were greater in M-eff cows. Although cumulative ECM yield did not differ due to RFI (1,138 vs. 1,091 ± 21 kg), an RFI × time interaction due to greater ECM yield was found in M-eff cows. Among plasma biomarkers studied, concentrations of nonesterified fatty acids, β-hydroxybutyrate, bilirubin, ceruloplasmin, haptoglobin, myeloperoxidase, and reactive oxygen metabolites were overall greater, and glucose, paraoxonase, and IL-6 were lower in M-eff compared with L-eff cows. Among bacteria studied, abundance of Ruminobacter amylophilus and Prevotella ruminicola were more than 2-fold greater in M-eff cows. Despite lower ruminal activity of amylase in M-eff cows in the prepartum, regardless of RFI, we observed a marked linear increase after calving in amylase, cellulase, and xylanase activities. Protease activity did not differ due to RFI, time, or RFI × time. Despite greater concentrations of biomarkers reflective of negative energy balance and inflammation, higher feed efficiency measured as RFI in peripartal dairy cows might be associated with shifts in ruminal bacteria and amylase enzyme activity. Further studies could help address such factors, including the roles of the liver and the mammary gland.

    PMID:35840400 | DOI:10.3168/jds.2021-21274

  • Associations between time in the close-up group and milk yield, milk components, reproductive performance, and culling of Holstein dairy cows fed acidogenic diets: A multisite study

    J Dairy Sci. 2022 Aug;105(8):6858-6869. doi: 10.3168/jds.2021-21526. Epub 2022 Jul 13.

    ABSTRACT

    The objective of this prospective cohort study was to evaluate the association between the prepartum days in the close-up group (DINCU) and milk yield, milk components, reproductive performance, and culling risk in the subsequent lactation for Holstein dairy cows. Dry cow feeding management of 20 farms was evaluated during 2 farm visits. All farms were feeding an acidogenic diet in the close-up group. Data from 14,843 cows were collected for 365 d following the second farm visit. Data sets of 13,314 cows were available for final statistical analysis after exclusion of cows with missing information about gestation length, cows with a gestation length shorter than 262 d or longer than 292, cows with 0 DINCU, and cows with >42 DINCU. At enrollment, 3,871 and 9,443 of those animals were nulliparous and parous cows, respectively. Continuous data such as energy corrected milk (ECM), the ratio of fat and protein, and somatic cell score (SCS) at first test day were analyzed using linear mixed models. Binary data such as stillbirth, culling within 60 DIM, and pregnancy within 150 DIM were analyzed using logistic regression models. Based on their different physiology, separate models were built for nulliparous and parous cows. All results displayed are the predicted least squares means from the multivariable analyses. A significant association between DINCU and milk yield at first test day was observed for nulliparous and parous cows. Nulliparous cows with 7, 21, or 35 DINCU had a first test day ECM of 31.8, 33.3, and 35.5 kg, respectively. Parous cows with 7, 21, or 35 DINCU had a first test day ECM of 42.8, 45.6, and 44.6 kg of ECM, respectively. In nulliparous cows, there was a tendency for an association between DINCU and the ratio of fat and protein at first test day. In parous cows, however, a significant association was observed. Parous cows with 7, 21, or 35 DINCU had a ratio of fat and protein of 1.31, 1.35, and 1.37, respectively. There was a significant association between DINCU and SCS at first test day in nulliparous and parous cows. In nulliparous cows with 7, 21, or 35 DINCU, SCS was 2.39, 2.49, and 2.85, respectively. In parous cows with 7, 21, or 35 DINCU, SCS was 2.46, 2.53, and 2.78, respectively. No associations were observed between DINCU and occurrence of stillbirth and DINCU and the risk of pregnancy within 150 DIM. The multivariable model predicted a tendency for an association between DINCU and the risk of being culled within 60 DIM in parous cows. Particularly, 0 to 6 DINCU were associated with a substantially increased risk of being culled. In conclusion, a short stay in the close-up group should be avoided to improve milk yield at first test day and to minimize culling risk for parous cows. A long stay in the close-up group (>30 d) was associated with reduced milk production and an increased ratio of fat and protein in milk of parous cows and increased SCS of nulliparous and parous cows.

    PMID:35840404 | DOI:10.3168/jds.2021-21526

  • Metabolic and antioxidant status during transition is associated with changes in the granulosa cell transcriptome in the preovulatory follicle in high-producing dairy cows at the time of breeding

    J Dairy Sci. 2022 Aug;105(8):6956-6972. doi: 10.3168/jds.2022-21928. Epub 2022 Jul 13.

    ABSTRACT

    In this study, we hypothesized that early postpartum (pp) metabolic and oxidative stress conditions in dairy cows (particularly those with severe negative energy balance, NEB) are associated with long-term changes in granulosa cell (GC) functions in the preovulatory follicle at the time of breeding. Blood samples were collected at wk 2 and wk 8 pp from 47 healthy multiparous cows. Follicular fluid (FF) and GC were collected from the preovulatory follicle after estrous synchronization at wk 8. Several metabolic and antioxidant parameters were measured in blood and FF, and their correlations were studied. Subsequently, 27 representative GC samples were selected for RNA sequencing analysis. The GC gene expression data of LH-responsive genes and the estradiol:progesterone ratio in FF were used to identify pre- and post-LH surge cohorts. We compared the transcriptomic profile of subgroups of cows within the highest and lowest quartiles (Q4 vs. Q1) of each parameter, focusing on the pre-LH surge cohort (n = 16, at least 3 in each subgroup). Differentially expressed genes (DEG: adjusted P-value < 0.05, 5% false discovery rate) were determined using DESeq2 analysis and were functionally annotated. Blood and FF β-carotene and vitamin E concentrations at wk 2, but not at wk 8, were associated with the most pronounced transcriptomic differences in the GC, with up to 341 DEG indicative for lower catabolism, increased oxidoreductase activity and signaling cascades that are known to enhance oocyte developmental competence, increased responsiveness to LH, and a higher steroidogenic activity. In contrast, elevated blood NEFA concentrations at wk 2 (and not at wk 8) were associated with a long-term carryover effect detectable in the GC transcriptome at wk 8 (64 DEG). These genes are related to response to lipids and ketones, oxidative stress, and immune responses, which suggests persistent cellular stress and oxidative damage. This effect was more pronounced in cows with antioxidant deficiencies at wk 8 (up to 148 DEG), with more genes involved in oxidative stress-dependent responses, apoptosis, autophagy and catabolic processes, and mitochondrial damage. Interestingly, within the severe NEB cows (high blood NEFA at wk 2), blood antioxidant concentrations (high vs. low) at wk 8 were associated with up to 194 DEG involved in activation of meiosis and other signaling pathways, indicating a better oocyte supportive capacity. This suggests that the cow antioxidant profile at the time of breeding might alleviate, at least in part, the effect of NEB on GC functions. In conclusion, these results provide further evidence that the metabolic and oxidative stress in dairy cows early postpartum can have long-term effects on GC functions in preovulatory follicles at the time of breeding. The interplay between the effects of antioxidants and NEFA illustrated here might be useful to develop intervention strategies to minimize the effect of severe NEB on fertility.

    PMID:35840405 | DOI:10.3168/jds.2022-21928

  • Genetic parameters for dairy calf and replacement heifer wellness traits and their association with cow longevity and health indicators in Holstein cattle

    J Dairy Sci. 2022 Aug;105(8):6749-6759. doi: 10.3168/jds.2021-21450. Epub 2022 Jul 13.

    ABSTRACT

    High mortality and involuntary culling rates cause great economic losses to the worldwide dairy cattle industry. However, there is low emphasis on wellness traits in replacement animals (dairy calves and replacement heifers) during their development stages in modern dairy cattle breeding programs. Therefore, the main objectives of this study were to estimate genetic parameters of wellness traits in replacement cattle (replacement wellness traits) and obtain their genetic correlations with 12 cow health and longevity traits in the Chinese Holstein population. Seven replacement wellness traits were analyzed, including birth weight, survival from 3 to 60 d (Sur1), survival from 61 to 365 d (Sur2), survival from 366 d to the first calving (Sur3), calf diarrhea, calf pneumonia, and calf serum total protein (STP). Single and bivariate animal models were employed to estimate (co)variance components using the data from 189,980 Holstein cattle. The genetic correlations between replacement wellness traits and cow longevity, health traits were calculated by employing bivariate models, including 6 longevity traits and 6 health traits (clinical mastitis, metritis, ketosis, displaced abomasum, milk fever, and hoof health or hoof disease). The estimated heritabilities (± SE) were 0.335 (± 0.008), 0.088 (± 0.005), 0.166 (± 0.006), 0.102 (±0 .006), 0.048 (± 0.003), 0.063 (± 0.004), and 0.170 (± 0.019) for birth weight, Sur1, Sur2, Sur3, pneumonia, diarrhea, and STP, respectively. The majority of the genetic correlations among the 7 replacement wellness traits were negligible. The genetic correlations among Sur1, Sur2, and Sur3 ranged from 0.112 (Sur1 and Sur3) to 0.445 (Sur1 and Sur2) when fitting a linear model (estimates in the observed scale), and from 0.560 (Sur1 and Sur3) to 0.773 (Sur1 and Sur2) when fitting a threshold model (estimates in the liability scale). The genetic correlations between replacement wellness and cow longevity were low (absolute value lower than 0.30), but some of them were significantly different from zero. Compared with other replacement wellness traits, Sur3 and STP had relatively high genetic correlations with cow longevity. Replacement wellness traits are heritable and can be improved through direct genetic and genomic selection. The results from the current study will contribute for better balancing dairy cattle breeding goals to genetically improve dairy cattle wellness in the period from birth to first calving.

    PMID:35840408 | DOI:10.3168/jds.2021-21450

  • Effects of calcareous marine algae on milk production, feed intake, energy balance, mineral status, and inflammatory markers in transition dairy cows

    J Dairy Sci. 2022 Aug;105(8):6616-6627. doi: 10.3168/jds.2021-21443. Epub 2022 Jul 13.

    ABSTRACT

    The objective of this experiment was to compare the effects of calcareous marine algae (CMA; Acid Buf, Celtic Sea Minerals) with a limestone-based control on feed intake, milk production, energy balance, serum mineral metabolites, and inflammatory markers in transition dairy cows. Twenty-two multiparous and 10 primiparous cows were assigned to 2 treatments from 25 d before expected parturition until 42 d postpartum. Cows were assigned to treatment according to a randomized complete block design based on parity, pre-experimental body condition score, previous 305-d milk yield, and either fat + protein yield (for multiparous cows) or predicted transmitting ability for milk yield and fat + protein yield (for primiparous cows). Cows were fed a negative dietary cation-anion difference [-50 mEq/kg] total mixed ration (TMR) based on corn silage, grass silage, and straw during the prepartum period and a 50:50 forage:concentrate TMR based on grass silage, corn silage, and concentrate during the postpartum period. The 2 dietary treatments consisted of a control (CON), which contained limestone as the primary calcium source, and CMA, in which limestone was replaced by CMA at 0.42% and 0.47% of dry matter for the pre- and postpartum periods, respectively. The dietary treatments were fed as 2 different concentrate pellets added to the TMR. Cows fed the CMA diet had higher dry matter intake in both the prepartum (+1.08 kg) and postpartum (+0.94 kg) periods compared with cows fed the CON diet. Fat yield (+0.11 kg), fat concentration (+0.43%), and 4% fat-corrected milk (+1.56 kg) were higher in cows fed CMA than in cows fed CON. The concentration of plasma serum amyloid A was reduced and that of serum P was increased on the CMA treatment compared with the CON treatment. These findings demonstrate the benefits of supplementing CMA to dairy cows during the transition period compared with a CON treatment containing limestone as the primary Ca source.

    PMID:35840410 | DOI:10.3168/jds.2021-21443

  • Combined biotin, folic acid, and vitamin B<sub>12</sub> supplementation given during the transition period to dairy cows: Part I. Effects on lactation performance, energy and protein metabolism, and hormones

    J Dairy Sci. 2022 Aug;105(8):7079-7096. doi: 10.3168/jds.2021-21677. Epub 2022 Jul 13.

    ABSTRACT

    Biotin (B8), folates (B9), and vitamin B12 (B12) are involved and interrelated in several metabolic reactions related to energy and protein metabolism. We hypothesized that a low supply of one of the latter vitamins during the transition period would impair metabolic status. The purpose of this study was to evaluate the effect of B8 supplementation on the response of lactation performance and selected energy and protein metabolites and hormones to a combined supplementation of B9 and B12 given to periparturient dairy cows, from d -21 to 21 relative to calving. A total of 32 multiparous Holstein cows housed in tie stalls were randomly assigned, according to their previous 305-d milk yield, to 8 incomplete blocks of 4 treatments: (1) a 2-mL weekly i.m. injection of saline (0.9% NaCl; B8-/B9B12-); (2) 20 mg/d of dietary B8 (unprotected from ruminal degradation) and 2-mL weekly i.m. injection of 0.9% NaCl (B8+/B9B12-); (3) 2.6 g/d of dietary B9 (unprotected) and 2-mL weekly i.m. injection of 10 mg of B12 (B8-/B9B12+); and (4) 20 mg/d of dietary B8, 2.6 g/d of dietary B9, and weekly i.m. injection of 10 mg of B12 (B8+/B9B12+) in a 2 × 2 factorial arrangement. Milk yield and dry matter intake were obtained daily and milk components weekly. Blood samples were taken weekly from d -21 to calving and 3 times per week from calving to 21 d following parturition. Prepartum plasma concentrations of glucose, insulin, nonesterified fatty acids (NEFA), β-hydroxybutyrate (BHB), and adiponectin were unaffected by treatments. Biotin, B9, and B12 supplements increased their respective concentrations in plasma and milk. Cows fed the B8 supplement tended to have lower dry matter intake, but only cows in B8+/B9B12– had greater plasma concentrations of NEFA compared with B8-/B9B12-. Milk and total solid yields were greater by 13.5 and 13.9%, respectively, for B8-/B9B12+ [45.5 (standard error, SE: 1.8) and 5.81 (0.22) kg/d, respectively] compared with B8-/B9B12– [40.1 (1.9) and 5.10 (0.23) kg/d, respectively], but these effects were suppressed when combined with the B8 supplement. Cows in the B8-/B9B12+ group had decreased plasma insulin and tended to have increased NEFA concentrations, but postpartum plasma concentrations of glucose, BHB, leptin, and adiponectin were not affected. These cows also mobilized more body fat reserves, as suggested by a tendency to increased plasma NEFA and more milk total solids compared with B8-/B9B12– cows. However, plasma concentrations of BHB and adiponectin were similar among treatments. This suggests that the B9 and B12 supplements enhanced efficiency of energy metabolism in early lactation cows. Folic acid and B12 supplementation increased postpartum plasma Cys and homocysteine concentrations but did not affect plasma Met concentration, suggesting an upregulation of the transsulfuration pathway. In summary, our results showed that, under the current experimental conditions, increasing B8 supply did not improve responses to the B9 and B12 supplementation.

    PMID:35840411 | DOI:10.3168/jds.2021-21677

  • Temperature-humidity index and reproductive performance of dairy cattle farms in Lima, Peru

    Open Vet J. 2022 May-Jun;12(3):399-406. doi: 10.5455/OVJ.2022.v12.i3.14. Epub 2022 Jun 19.

    ABSTRACT

    BACKGROUND: Heat stress results in a mild reduction in milk production, while long-term heat stress exposure can severely affect the productive and reproductive performance in dairy cattle.

    AIM: To quantify the relationship between reproductive performance and temperature-humidity index in dairy cattle farms in Lima, Peru.

    METHODS: Monthly service, conception, and pregnancy rates were measured from four dairy farms in four different Lima localities as reproductive performance indicators, along with an index of heat stress and maximum daily temperature-humidity index (max THI), during a 3-year period. In order to establish the relationship between the max THI and the reproductive performance indicators, a multiple regression analysis was carried out, which considered farm and year as explicative variables.

    RESULTS: The regression model showed an adjusted R 2 of 33.5% with an estimated standard error of 5.75% and was highly significant (p < 0.001). The regression coefficients for max THI for the variables pregnancy rate and conception rate were significant (p < 0.0001). With every increasing unit of max THI, a 0.84% drop in the pregnancy rate and a 1.74% drop in the conception rate were estimated by the model. The regression coefficient of max THI for the service rate variable was not significant.

    CONCLUSION: It was concluded that the increase in max THI significantly affected the reproductive performance of intensive dairy cattle farms in Lima.

    PMID:35821781 | PMC:PMC9270945 | DOI:10.5455/OVJ.2022.v12.i3.14

  • Addition of açai oil during the close-up dry period of Holstein cows improves colostrum quality and immune responses of their calves

    An Acad Bras Cienc. 2022 Jul 8;94(4):e20201592. doi: 10.1590/0001-3765202220201592. eCollection 2022.

    ABSTRACT

    This study evaluated of the effects of açai oil during the close-up dry period of Holstein cows on colostrum quality, as well as on the immune and antioxidant responses of their calves. Sixteen multiparous cows were assigned randomly to two treatments: 1) CONTROL (n = 8) – 4.48% of soybean oil/concentrate; 2) AÇAI (n =8) – 4.48% of açai oil/concentrate. Cows fed with açai oil had greater (P≤0.04) colostrum concentrations of immunoglobulins (Ig) G (1st and 2nd milking), IgG heavy chains, IgA (only at 1st milking), alpha-lactalbumin (1st milking), total protein, and antioxidant capacity against peroxyl radicals (only at 1st milking). Cows fed with açai oil had greater serum concentrations of globulin (only on the day of calving) and total protein (only on the day of calving) (P = 0.03). Calves born of cows fed with açai oil had greater serum concentrations of total protein (only 24 and 48 h after calving) and serum concentration of IgG heavy chain (only 24 h after calving) and globulin (only 24 and 48 h after calving) (P = 0.01). These data suggest that the addition of açai oil in the cow feed during the close-up dry period boosted immunity in their calves by altering the composition of colostrum.

    PMID:35830021 | DOI:10.1590/0001-3765202220201592

  • Telomere length in bovine sperm is related to the production of reactive oxygen species, but not to reproductive performance

    Theriogenology. 2022 Sep 1;189:290-300. doi: 10.1016/j.theriogenology.2022.06.025. Epub 2022 Jul 5.

    ABSTRACT

    Over the last decades, selection in cattle has mainly been based on milk production rather than on reproductive efficiency. While, when applied, focus on reproduction has involved females, attention has barely been paid to males and, if so, it has only looked at classical sperm quality parameters. In effect, variables such as telomere length have been missed, despite the fact that longer telomeres have been suggested to be linked to male fertility in humans. For this reason, the present study aimed to determine the length of telomeres in bovine sperm and their relationship with a) sperm quality evaluated through the conventional spermiogram and flow cytometry, and b) bull reproductive performance. For this purpose, 29 bulls were involved in this study. Sperm telomere length was evaluated through quantitative Fluorescent In Situ Hybridization (qFISH), and sperm quality was determined at 0 h and 4 h post-thaw. Bull fertility was assessed as non-return to estrus rates after 90 days of artificial insemination. Although the mean telomere length in bovine sperm was 12.06 ± 2.75 kb, the intra-individual variability in length led us to observe three different groups of telomeres in each sperm cell: short telomeres (7.14% ± 5.79% of telomeres; 8.29 ± 2.34 kb), medium telomeres (31.03% ± 12.92% of telomeres; 16.00 ± 2.72 kb) and long telomeres (61.93% ± 18.11% of telomeres; 30.13 ± 11.35 kb). Moreover, whereas reactive oxygen species (ROS) were found to be correlated to sperm telomere length (Rs = -0.492; P= 0.007), no correlation with other sperm quality parameters was found (P > 0.05). Reproductive performance after artificial insemination was not seen to be correlated to sperm telomere length (Rs = 0.123; P= 0.520). In conclusion, this study determined, for the first time, the mean telomere length in bovine sperm and also reported that there is a high variability within each sperm cell. Yet, while telomere length was found to be correlated to ROS generation, it was not related to bull reproductive performance.

    PMID:35816887 | DOI:10.1016/j.theriogenology.2022.06.025

  • Increased β-hydroxybutyrate (BHBA) concentration affect follicular growth in cattle

    Anim Reprod Sci. 2022 Aug;243:107033. doi: 10.1016/j.anireprosci.2022.107033. Epub 2022 Jul 6.

    ABSTRACT

    Metabolic stress conditions caused by negative energy balance (NEB) have been associated with reduced fertility in cows. β-hydroxybutyrate (BHBA) is the main circulating ketone body, which accumulates within follicular fluid. The aim of this study was to evaluate the effects of BHBA on follicle growth and on ovulatory mechanisms in cattle. At 72 h after intrafollicular injection, there was a decrease in follicular diameter in BHBA group compared to control (P = 0.02). Furthermore, follicle growth rate was reduced post-treatment with BHBA in comparison to the control group (P < 0.03). The BHBA intrafollicular injection in follicles ≥ 12 mm, however, did not affect E2 and P4 concentrations in the follicular fluid. In addition, the relative abundance of genes involved in the ovulatory cascade (ADAM 17, AREG, EREG, PTGS2), steroidogenesis (CYP19A1, 3BHSD, STAR), cellular stress (SOD1, CAT, GPX1, HSPA5, XBP1s, XBP1u, ATF4, ATF6), monocarboxylic acid transporters (SLC16A1, SLC16A7) and apoptosis (XIAP) was similar between groups. In conclusion, the results of this study indicate that the increase in intrafollicular concentrations of BHBA affects follicular growth, but it does not compromise the ovulatory cascade and cellular homeostasis in bovine granulosa cells.

    PMID:35816934 | DOI:10.1016/j.anireprosci.2022.107033

  • A machine learning approach using partitioning around medoids clustering and random forest classification to model groups of farms in regard to production parameters and bulk tank milk antibody status of two major internal parasites in dairy cows

    PLoS One. 2022 Jul 11;17(7):e0271413. doi: 10.1371/journal.pone.0271413. eCollection 2022.

    ABSTRACT

    Fasciola hepatica and Ostertagia ostertagi are internal parasites of cattle compromising physiology, productivity, and well-being. Parasites are complex in their effect on hosts, sometimes making it difficult to identify clear directions of associations between infection and production parameters. Therefore, unsupervised approaches not assuming a structure reduce the risk of introducing bias to the analysis. They may provide insights which cannot be obtained with conventional, supervised methodology. An unsupervised, exploratory cluster analysis approach using the k-mode algorithm and partitioning around medoids detected two distinct clusters in a cross-sectional data set of milk yield, milk fat content, milk protein content as well as F. hepatica or O. ostertagi bulk tank milk antibody status from 606 dairy farms in three structurally different dairying regions in Germany. Parasite-positive farms grouped together with their respective production parameters to form separate clusters. A random forests algorithm characterised clusters with regard to external variables. Across all study regions, co-infections with F. hepatica or O. ostertagi, respectively, farming type, and pasture access appeared to be the most important factors discriminating clusters (i.e. farms). Furthermore, farm level lameness prevalence, herd size, BCS, stage of lactation, and somatic cell count were relevant criteria distinguishing clusters. This study is among the first to apply a cluster analysis approach in this context and potentially the first to implement a k-medoids algorithm and partitioning around medoids in the veterinary field. The results demonstrated that biologically relevant patterns of parasite status and milk parameters exist between farms positive for F. hepatica or O. ostertagi, respectively, and negative farms. Moreover, the machine learning approach confirmed results of previous work and shed further light on the complex setting of associations a between parasitic diseases, milk yield and milk constituents, and management practices.

    PMID:35816512 | PMC:PMC9273072 | DOI:10.1371/journal.pone.0271413

  • Milk carbon footprint of silvopastoral dairy systems in the Northern Peruvian Amazon

    Trop Anim Health Prod. 2022 Jul 9;54(4):227. doi: 10.1007/s11250-022-03224-5.

    ABSTRACT

    The objective of this study was to estimate the carbon footprint (CF) of milk production (in kg of CO2 equivalents (CO2e) per kg of fat and protein corrected milk (FPCM)) in dairy farms of the San Martín region, in the Peruvian Amazon. A cradle-to-farm gate characterization and analysis were carried out on eight representative dairy farms. Greenhouse gas (GHG) emissions were estimated using equations, following the 2019 refinement of the 2006 IPCC Guidelines. The results showed an average milk production of 9.7 ± 0.82 L milk/cow/day, Gyr x Holstein crosses as the predominant breed, use of cultivated grasses such as Brachiaria brizantha, living fences (Guazuma ulmifolia Lam) as the predominant silvopastoral arrangement, and low level of external inputs such as feed or grain additives. In relation to CF, an average value of 2.26 ± 0.49 kg CO2e/kg FPCM was obtained, with enteric fermentation being the most important source (1.81 ± 0.51 kg CO2e/kg FPCM), followed by manure management, land use, and energy/transport (0.26 ± 0.06, 0.14 ± 0.04, and 0.05 ± 0.04 kg CO2e/kg FPCM, respectively). Differences were found between farmers, obtaining lower CF values (1.76 vs 3.09 kg CO2e/kg FPCM) on farms with better feed quality, higher production levels, and a higher percentage of lactating animals compared to dry cows. It is concluded that dairy farms in the Peruvian Amazon region can reduce their emissions if they improve their current feeding practices.

    PMID:35809110 | DOI:10.1007/s11250-022-03224-5

  • The effect of quercetin in the maturation media on cumulus-granulosa cells and the developmental competence of bovine oocytes

    Theriogenology. 2022 Sep 1;189:262-269. doi: 10.1016/j.theriogenology.2022.06.026. Epub 2022 Jul 2.

    ABSTRACT

    The present study was designed to investigate the effects of Quercetin on the developmental competence of bovine oocytes and cumulus-granulosa cells (CGs). Two groups of immature cumulus-oocyte complexes (COCs) were subjected to IVM with or without Quercetin. The viability, nuclear status, early and late apoptosis of oocytes and CGs were evaluated using gene expression analysis and staining methods. Embryonic development was assessed morphologically by recording Post-IVF survival, cleavage, and blastocyst rates. The proportion of oocytes reaching the MII stage was greater and the number of early-apoptotic oocytes was lower in the group matured with Quercetin compared to the Control (p < 0.05). Relative upregulation of OCT-4, IGF2R and Bcl-2, and downregulation of CHOP was seen in treated oocytes. Also, downregulation of Bax and upregulation of Glut-4 was detected in treated CGs. The treated oocytes experienced higher post-IVF survival and cleavage rates compared to the untreated group (p < 0.05); more cleaved embryos reached ≥16-cell stage and blastocyst at days 4th and 7th respectively. In addition, total blastocyst rate was significantly improved. It is concluded that supplementing maturation media with Quercetin can enhance the quality of bovine oocytes and endow them with protective potential against early apoptotic damage possibly through CHOP regulation of BCL2 gene family, triggering expression of a gene in CGs to maintain the intactness of oocyte against apoptotic signals and providing oocytes with more energy substrates. It also boosts the subsequent development of oocyte to blastocyst and improves the efficacy of bovine embryo production in vitro.

    PMID:35809360 | DOI:10.1016/j.theriogenology.2022.06.026

  • Prospective cohort study reveals unexpected aetiologies of livestock abortion in northern Tanzania

    Sci Rep. 2022 Jul 8;12(1):11669. doi: 10.1038/s41598-022-15517-8.

    ABSTRACT

    Livestock abortion is an important cause of productivity losses worldwide and many infectious causes of abortion are zoonotic pathogens that impact on human health. Little is known about the relative importance of infectious causes of livestock abortion in Africa, including in subsistence farming communities that are critically dependent on livestock for food, income, and wellbeing. We conducted a prospective cohort study of livestock abortion, supported by cross-sectional serosurveillance, to determine aetiologies of livestock abortions in livestock in Tanzania. This approach generated several important findings including detection of a Rift Valley fever virus outbreak in cattle; high prevalence of C. burnetii infection in livestock; and the first report of Neospora caninum, Toxoplasma gondii, and pestiviruses associated with livestock abortion in Tanzania. Our approach provides a model for abortion surveillance in resource-limited settings. Our findings add substantially to current knowledge in sub-Saharan Africa, providing important evidence from which to prioritise disease interventions.

    PMID:35803982 | PMC:PMC9270399 | DOI:10.1038/s41598-022-15517-8

  • Intramammary infections with Corynebacterium spp. in bovine lactating udder quarters

    PLoS One. 2022 Jul 7;17(7):e0270867. doi: 10.1371/journal.pone.0270867. eCollection 2022.

    ABSTRACT

    Corynebacterium spp. are frequently detected in bovine quarter milk samples, yet their impact on udder health has not been determined completely. In this longitudinal study, we collected quarter milk samples from a dairy herd of approximately 200 cows, ten times at 14 d intervals. Bacteriologically, Catalase-positive and Gram-positive rods were detected in 22.7% of the samples. For further species diagnosis, colonies were analyzed by MALDI-TOF MS. Corynebacterium bovis, C. amycolatum, C. xerosis and 10 other Corynebacterium spp. were detected. The three aforementioned species accounted for 88.4%, 8.65% and 0.94% of all cultured Corynebacterium spp., respectively. For further evaluation of infection dynamics, the following three infection definitions were applied: A (2/3 consecutive samples positive for the same species), B (≥1000 cfu/mL in one sample), C (isolated from a clinical mastitis case). Infections according to definition B occurred most frequently and clinical mastitis with Corynebacterium spp. occurred once during sampling. Life tables were used to determine the duration of infection. According to infection definition A, infection durations of 111 d and 98 d were obtained for C. bovis and C. amycolatum, respectively. Exemplarily, longer lasting infections were examined for their strain diversity by RAPD PCR. A low strain diversity was found in the individual quarters that indicates a longer colonization of the udder parenchyma by C. bovis and C. amycolatum.

    PMID:35797266 | PMC:PMC9262192 | DOI:10.1371/journal.pone.0270867

  • Review: Influence of postabsorptive metabolism on essential amino acid partitioning in lactating dairy cows

    Animal. 2022 Aug;16 Suppl 3:100573. doi: 10.1016/j.animal.2022.100573. Epub 2022 Jul 5.

    ABSTRACT

    In the lactating cow, essential amino acids (EAAs) absorbed from the gut are partitioned to mammary and extra-mammary tissues via blood plasma circulation. There is also entry of EAA into plasma from the breakdown of proteins in the cow’s body. A balance model across plasma was solved to integrate entry rates of branched-chain (BCAA) and non-branched-chain EAA (NBAA) with their corresponding rate constants for clearance by mammary glands and the remainder of the body, for selected glucose and fat infusion experiments. Endogenous EAA entry from whole-body proteolysis was reduced by glucose and unchanged or increased by fat, the efficiency of net plasma BCAA clearance by mammary and extra-mammary tissues was elevated by glucose but slightly reduced by fat, and the efficiency of extra-mammary NBAA clearance may have decreased during glucose infusion but it was not affected or slightly increased by fat. These differences between glucose and fat responses can be accounted for by insulin and glucagon. Insulin suppresses endogenous EAA entry through mechanistic target of rapamycin complex 1, integrated stress response, and glycogen synthase kinase 3 signaling networks in skeletal muscle. While these networks can also regulate protein synthesis rates in muscle and the extra-mammary body, they exhibit low sensitivities to insulin in lactating ruminants. However, in the mammary glands, via these same networks, insulin stimulates clearance of EAA from plasma, although the drive to maintain a set point for milk protein yield takes precedence over nutritional signals. The glucose-induced increase in mammary BCAA clearance without an effect on NBAA clearance is due to a pronounced decrease in plasma BCAA concentrations. Because NBAAs do not experience a similar decline in concentration, the BCAA effect must be due to their metabolic transformation as opposed to sequestration in proteins. In adipose, the products of BCAA catabolism are lipogenic precursors. We propose that faster lipogenesis in adipose tissue, stimulated by glucose infusion, also promotes the uptake of precursor BCAA from plasma, causing a drop in their circulating concentrations. In addition, insulin stimulates BCAA oxidation in muscle as an alternative fuel to fatty acids. A lower efficiency of extra-mammary NBAA clearance during glucose infusion may be the consequence of decreased hepatic expression of AA-catabolizing enzymes in response to low glucagon concentration. The proportion of EAA entry partitioned to the mammary glands is a culmination of regulatory shifts at all of the points discussed above according to a regulated or unfair competition between mammary and extra-mammary processes.

    PMID:35798662 | DOI:10.1016/j.animal.2022.100573

  • RNA-Sequencing based analysis of bovine endometrium during the maternal recognition of pregnancy

    BMC Genomics. 2022 Jul 7;23(1):494. doi: 10.1186/s12864-022-08720-4.

    ABSTRACT

    BACKGROUND: Maternal recognition is the crucial step for establishing pregnancy in cattle. This study aims to identify endometrial genes and biological pathways involved in the maternal recognition of pregnancy. Caruncular endometrial tissues were collected from Day 15-17 of gestation (pregnant), non-pregnant (absence of conceptus), and cyclic (non-bred) heifers.

    RESULTS: Total RNAs were isolated from the caruncular endometrial tissues of pregnant, non-pregnant, and cyclic heifers, and were subjected to high-throughput RNA-sequencing. The genes with at least two-fold change and Benjamini and Hochberg p-value ≤ 0.05 were considered differentially expressed genes and further confirmed with quantitative real-time PCR. A total of 107 genes (pregnant vs cyclic) and 98 genes (pregnant vs non-pregnant) were differentially expressed in the pregnant endometrium. The most highly up-regulated genes in the pregnant endometrium were MRS2, CST6, FOS, VLDLR, ISG15, IFI6, MX2, C15H11ORF34, EIF3M, PRSS22, MS4A8, and TINAGL1. Interferon signaling, immune response, nutrient transporter, synthesis, and secretion of proteins are crucial pathways during the maternal recognition of pregnancy.

    CONCLUSIONS: The study demonstrated that the presence of conceptus at Day 15-17 of gestation affects the endometrial gene expression related to endometrial remodeling, immune response, nutrients and ion transporters, and relevant signaling pathways in the caruncular region of bovine endometrium during the maternal recognition of pregnancy.

    PMID:35799127 | PMC:PMC9264496 | DOI:10.1186/s12864-022-08720-4

  • Expression and differential posttranscriptional regulation of the elongation factor 1 alpha 1 gene in endometrial caruncle and intercaruncle of Japanese Black cattle at early and mid-gestation stages

    Anim Sci J. 2022 Jan;93(1):e13746. doi: 10.1111/asj.13746.

    ABSTRACT

    The elongation factor 1 alpha 1 (EEF1A1), an isoform of EEF1A, is one of the most abundant cytoplasmic proteins and an important component of the translational machinery. We investigated the relative expression, alternative polyadenylation (APA), and changes in poly(A) tail length of EEF1A1 mRNA in the endometrial caruncle (CAR) and intercaruncle (ICAR) at early and mid-gestation in Japanese Black cattle. The relative EEF1A1 mRNA expression levels in the CAR were the highest on Gestation day 20 and were significantly decreased at mid-gestation. The expression levels in the ICAR were significantly higher than those in the CAR, and the gestation stage had no significant impact. Four different EEF1A1 transcripts with distinct 3′ untranslated regions (UTRs) (proximal and distal types) and poly(A) tails (medium and short types) of different lengths were identified. The EEF1A1 mRNAs with distal 3′ UTR and medium-length poly(A) tails were specific from the CAR of uterus horn at early gestation. RNA-sequencing data analyses revealed that the HSF1, MZF1, E47, SRF, GATA2, GATA3, GATA6, HNF-3 beta (FOXA2), CPSF1, and Ataxin-2 genes might affect the EEF1A1 gene expression or poly(A) length.

    PMID:35791676 | DOI:10.1111/asj.13746

  • Effect of elevating luteinizing hormone action using low doses of human chorionic gonadotropin on double ovulation, follicle dynamics, and circulating follicle-stimulating hormone in lactating dairy cows

    J Dairy Sci. 2022 Aug;105(8):7023-7035. doi: 10.3168/jds.2021-21767. Epub 2022 Jul 2.

    ABSTRACT

    Double ovulation and twin pregnancy are undesirable traits in dairy cattle. Based on previous physiological observations, we tested the hypothesis that increased LH action [low-dose human chorionic gonadotropin (hCG)] before the expected time of diameter deviation would change circulating FSH concentrations, maximum size of the second largest (F2) and third largest (F3) follicles, and frequency of multiple ovulations in lactating dairy cows with minimal progesterone (P4) concentrations. In replicate 1, multiparous, nonbred lactating Holstein dairy cows (n = 18) had ovulation synchronized. On d 5 after ovulation, all cows had their corpus luteum regressed and were submitted to follicle (≥3 mm) aspiration 24 h later to induce emergence of a new follicular wave. Cows were then randomized to NoP4 (untreated) and NoP4+hCG (100 IU of hCG every 24 h for 4 d after follicle aspiration). Ultrasound evaluations and blood sample collections were performed every 12 h for 7 d after follicle aspiration. All cows were then treated with 200 μg of GnRH to induce ovulation. In replicate 2, cows (n = 16) were resubmitted to similar procedures (i.e., corpus luteum regression, follicle aspiration, randomization, ultrasound evaluations every 12 h, GnRH 7 d after aspiration). However, cows in replicate 2 received an intravaginal P4 device that had been previously used (∼18 d). Only cows with single (n = 15) and double (n = 16) ovulations were used in the analysis. No significant differences were detected for frequency of double ovulation, follicle sizes, and FSH concentrations across replicates (NoP4 vs. LowP4 and NoP4+hCG vs. LowP4+hCG), so data were combined. Double ovulation was 40% for control cows with no hCG (CONT) and 62.5% with hCG (hCG). Double ovulation increased as the maximum size of F2 increased: <9.5 mm and 9.5-11.5 mm (7.7%) and ≥11.5 mm (94.1%). The hCG group had more cows with F2 > 11.5 (69%) than with 9.5 ≥ F2 ≤ 11.5 (25%) and F2 < 9.5 (6%). In agreement, F2 and F3 maximum size were larger in the hCG group, but FSH concentrations were lower after F1 > 8.5 mm compared with CONT. In contrast, FSH concentrations were greater before deviation (F1 closest value to 8.5 mm) in cows with double ovulations than in those with single ovulations, regardless of hCG treatment. In addition, time from aspiration to deviation was shorter in cows with double rather than single ovulation and in cows treated with hCG as a result of faster F1, F2, and F3 growth rates before diameter deviation. In conclusion, greater FSH and follicle growth before deviation seems to be a primary driver of greater frequency of double ovulation in lactating cows with low circulating P4. Moreover, the increase in follicle growth before deviation and in the maximum size of F2 during hCG treatment suggests that increased LH may also have a role in stimulating double ovulation.

    PMID:35787327 | DOI:10.3168/jds.2021-21767

  • Detection of nonpregnant cows and potential embryo losses by color Doppler ultrasound and interferon-stimulated gene expression in grazing dairy cows

    J Dairy Sci. 2022 Aug;105(8):6973-6984. doi: 10.3168/jds.2021-21171. Epub 2022 Jul 2.

    ABSTRACT

    Many studies have been conducted to estimate pregnancy losses between 19 and 34 d after artificial insemination (AI) in dairy cows managed under confinement-based systems, but few studies have examined embryo mortality during this interval in dairy cows managed under gazing systems. The objectives of this prospective cohort study were (1) to assess the diagnostic value of the corpus luteum (CL) blood perfusion (BP) evaluation by Doppler ultrasound (US) to detect nonpregnant cows at 19 to 20 d post-AI, and (2) to assess the rate of potential embryo mortality between 19 to 34 d post-AI. The CL-BP of all cows included in the study (n = 131) was examined on farm by power and color mode of Doppler US and later using an image processing software by a second evaluator. The endometrium thickness and echotexture were evaluated by B-mode US at the same visit to assess if the nonpregnancy diagnosis could be improved at 19 to 20 d post-AI by this additional diagnostic tool. Blood samples were obtained at 19 to 20 d post-AI for progesterone (P4) measurement by chemiluminescence and to determine the mRNA expression of ISG by real-time PCR. Pregnancy diagnosis based on embryo visualization was performed at 33 to 34 d post-AI by US B-mode. In parallel interpretation, ISG15 and MX2 mRNA expression in leukocytes [sensitivity (Se), 100%] were regarded as suitable biomarkers for early pregnancy and were selected for molecular characterization of pregnancy at 19 to 20 d post-AI. At 19 to 20 d post-AI, 61.1% of the cows had positive CL-BP by Doppler US (Se, 98.0%), 62.7% had ISG mRNA expression in leukocytes over the cutoff point (Se, 95.7%), and 50.8% were positive, based on the combination of ISG mRNA expression, CL-BP by Doppler US, and P4 concentration (Se, 100%), and were considered as possible pregnant. At 33 to 34 d, the pregnancy rate was 37.4% diagnosed by the B-mode US. Based on the expression of the selected biomarkers in cows with active CL, we found that 28.1% of the cows could have potentially lost their pregnancy between 19 and 34 d post-AI. The Doppler US color mode showed similar accuracy and a higher negative predictive value than the genes selected as biomarkers. The additional B-mode ultrasound evaluation of the uterine stratum vasculare and the endometrium thickness improved the diagnostic accuracy. Therefore, assessing the CL-BP by Doppler US allowed early detection of nonpregnant cows at 19 to 20 d post-AI. The combination of early CL-BP by Doppler US (d 19 to 20) with early embryo detection by B-mode US (d 33-34) could be used to facilitate earlier rebreeding of dairy cows.

    PMID:35787328 | DOI:10.3168/jds.2021-21171

  • Effect of feeding fresh forage plantain (Plantago lanceolata) or ryegrass-based pasture on methane emissions, total-tract digestibility, and rumen fermentation of nonlactating dairy cows

    J Dairy Sci. 2022 Aug;105(8):6628-6638. doi: 10.3168/jds.2021-21757. Epub 2022 Jul 2.

    ABSTRACT

    Plantain (Plantago lanceolata) is an herb used to reduce the forage deficit of ryegrass-based pastures during the summer. This herb is being promoted for its reduced environmental impact in terms of nitrogen emissions, particularly reducing urinary nitrogen. However, the effect of plantain on emissions of enteric CH4, the main greenhouse gas produced from ruminant-based production systems, is not known. The aim of the present trial was to determine CH4 emissions and rumen fermentation characteristics of nonlactating dairy cows fed 100% plantain (PLT) or 100% perennial ryegrass (RG; Lolium perenne) in 2 experiments (E1 and E2). The forages were in a vegetative growth stage in E1 and were in a reproductive growth stage in E2. Methane emissions from 16 cows in each experiment were measured in respiration chambers for 2 d. Methane emissions per unit of dry matter intake (CH4 yield) were 15 and 28% less for cows fed PLT than those fed RG in E1 and E2, respectively. Dry matter digestibility of PLT was 7 and 27% less than that of RG in E1 and E2, respectively, and CH4 per unit of dry matter digested was similar for PLT and RG in both experiments. There were only minor (but some significant) differences in rumen fermentation characteristics between cows fed PLT and RG in both experiments. In conclusion, CH4 yield was lower for cows fed PLT compared with those fed RG in both experiments and this reduction was largely explained by the lesser dry matter digestibility of PLT.

    PMID:35787331 | DOI:10.3168/jds.2021-21757

  • Cross-Sectional Study of Seroprevalence and Associated Risk Factors of Bovine Brucellosis in Selected Districts of Jimma Zone, South Western Oromia, Ethiopia

    Biomed Res Int. 2022 Jun 25;2022:9549942. doi: 10.1155/2022/9549942. eCollection 2022.

    ABSTRACT

    Bovine brucellosis is one of the most widespread but neglected zoonotic diseases in developing countries where it is an endemic and growing problem causing public health impacts. Developing a cost-effective control strategy of the disease can only be guaranteed by knowledge of the disease epidemiology that defines its risk profiles. Hence, this study was designed to evaluate epidemiological aspects of bovine brucellosis in selected districts of Jimma zone. A cross-sectional study with multistage sampling techniques was conducted on 424 cattle to evaluate its seroprevalence. Likewise, 114 households were included for the investigation of risk factors. SPSS version 20 for data analysis and C-ELISA test for antibody detection were used. Moreover, the chi-square test for univariable analysis and logistic regression model for multivariable analysis were employed to assess association between seropositivity and risk factors. From this study, 3.3% (95% CI: 1.82-5.48) and 12.3% (95% CI: 6.88-19.75) seroprevalence of the disease was detected with the highest proportion found at Kersa district (6.5 (95% CI: 1.37-17.90) and (21.4 (95% CI: 4.66-50.80)) followed by Seka Chokorsa (1.76 (95% CI: 0.37-5.07) and (6.7 (95% CI: 1.40-18.27)) and Mana (1.75 (95% CI: 0.21-6.20) and (7.1 (95% CI: 0.88-23.50)) at individual animals and herd levels, respectively. Cattle of poor body condition, pregnant, and cows with history of abortion and repeat breeding were found 4.8 (95% CI: 2.00-22.74), 4.3 (95% CI: 1.43-13.04), 3.3 (95% CI: 1.07-10.21), and 2.7 (95% CI: 1.86-8.15) times more likely seropositive than their counterparts, respectively. Besides these, mixed feeding style was highly associated with seropositive reactors than separate feeding (AOR = 8.3; 95% CI: 1.76-38.99). These findings depicted substantial areas to be addressed in implementation of appropriate and immediate control actions and establishment of intervention mechanisms of bovine brucellosis.

    PMID:35789646 | PMC:PMC9250430 | DOI:10.1155/2022/9549942


PubMedに掲載されている雑誌の牛の繁殖学に関する最新文献をrssで自動収集して表示しております。

PubMedの検索式は以下です。適宜改変してご利用ください。2016/8/12
“Reproductive Physiological Phenomena”[Mesh] AND “Cattle”[mesh] AND “English”[language]